

What is SPICA?

SPICA Space Infrared Telescope for Cosmology and Astrophysics SPICA SPICA SPACE INFRARED TO S

SPICA Mission Overview

- Specifications
 - Telescope: 3m-class, 6 K
 - Revolving CIB at its energy peak
 - Direct detection of exoplanets
 - Core wavelength: 5-210 μ m
 - MIR Instrument
 - Including Coronagraph
 - Far-Infrared Instrument (SAFARI)
 - Orbit: Sun-Earth L2 Halo
 - Mission Life
 - 3 years (nominal)
 - 5 years (goal)
 - No expendables
 - Weight: 3.7 t
 - Launch: FY2018 (H-IIA)

Herschel & JWST

Herschel 2009 Launched 3.5 m, 80 K FIR-Submm

JWST 2014 Launch 6.5 m, ~ 40 K NIR-MIR T > 20K

1

Wanted!
Cooled
Telescope

Cool! Telescope

Reduction of BG by 10^6 -> Improvement of Sensitivity by 10^3

Space Infrared Telescope for Cosmology and Astrophysics

Revolution of Design Philosophy

ISO: 2.6t for 60cm \rightarrow SPICA 3.7t for 3.2m

Focal Plane Instruments Herschel **JWST** $\lambda/\delta\lambda$ (δV) **SPICA** 30000 (10 km s⁻¹) Good 3000 Sensitivity (100 km s^{-1}) 300 (100 km s⁻¹) WIDE FOV

Unique Instrument optimized for mid- and far-infrared

 $2 \mu m$

20 μm

200 μm

Ideal Input Catalog by AKARI

More than one million sources (Europe-Japan collaboration)

Scientific Capability of SPICA and synergy with IXO

The Cycling of Baryonic Matter in the Universe

- How did the Universe originate and what is it made of?
- What are the conditions for stellar and planetary formation?
- How did the universe evolve chemically? The emergence of life?

Scientific Goals (1/3)

- How did the Universe originate and what is it made of?
 - Importance of IR observations

What happened at z~2?

Star-formation Rate

AGN Population

What makes this relation?

- Stars
 - Starburst
 - $E/mc^2 \sim 0.005$
- Super MassiveBH
 - Active Galactic Nuclei (AGN)
 - $E/mc^2 \sim 0.1$

Importance of obscured population

 Obscured AGN population required to explain CXB

How deep can we see ?

X-ray vs IR

- ULIRGs (mostly starbursts) are weak X-ray emitters
 - Franchescini et al. 2003
- IR: starburst sensitive
- X-ray: AGN sensitive

IR spectroscopy →Energy Sources

- Effective tool to this identify energy sources
- Effective also for obscured sources

Spinoglio et al 2009

Characterize high-z galaxies

Herschel and SCUBA-2 → many objects in photometric surveys
Ohly SPICA can reveal nature and role of AGN and star

To reveal their nature and physics and chemistry

Cosmological Spectroscopoic Survey

900 hours Of Obs.

Cosmological Spectroscopoic Survey

900 hours Of Obs.

Largescale structure

Dark matter vs Barionic Matter

Black Hole Growth: IR View

- Decline of mass at high z ?
 - AKARI results (Im et al. 2010)
 - The next step: SPICA

Is "unified scheme" true?

Is "unified scheme" true?

- Some kind of anisotropy required
 - Is it torus?
 - To prove physical characteristics of molecular torus tori
 - IR observations of absorption in molecular tori

Fundamental ro-vibrational transition of CO

- v=0-1, $\Delta J=\pm 1$ @ 4.6 μ m
 - Many lines with different J
 - Temperature, column density
- Background Source
 - Central engine ?

Distance J = 2 Rotation Level V=2 Electronic Transition Vibration Level V=0 12CO(V=1-0)

Merits

- Multi-line spectroscopy allows to obtain physical conditions
- Very high spatial resolution

CO Absorption is detected

Hot CO gas detected

Large column density of hot gas

Nakagawa et al. in prep.

Subaru follow-up

- Several Velocity components
 - The strongest one is blue-shifted (-160 km/s) and hot (~several 100 K)
- Outflowing molecular torus ?

How can it be heated?

- Observations
 - T=200 1000K with $N_{H2} \sim 3 10 \times 10^{22} \text{ cm}^{-2}$ ■ Av \sim 20-100 mag ?
- PDR ?
 - UV heating
 - Only Av< a few mag for T~1000K
- XDR!
 - X-ray heating (from the central engine ?)
 - Large penetration depth Av > 10 mag
 - Efficient gas heating

Yet another synergy

- Technical synergy
 - Cryocoolers
 - Mechanical cryocoolers
 - AKARI, Planck, Suzaku heritage
 - Sorption Coolers
 - IRTS, Herschel heritage
 - ADR
 - Suzaku heritage
 - TES detectors

Exciting ERA

